
International Journal of Differential Equations and Applications

Volume 20, No. 2 (2021), pages: 157-168

ISSN (Print): 1311-2872; ISSN (Online): 1314-6084;

url: https://www.ijdea.eu
PA
ijdea.eu

AUTOMATED PRODUCT INFORMATION RETRIEVAL

IN E-COMMERCE

Stanislav Dakov1, Anna Malinova2

1,2Faculty of Mathematics and Informatics

Paisii Hilendarski University of Plovdiv

236 Bulgaria Blvd., 4003 Plovdiv, BULGARIA

ABSTRACT: The recent paper presents automatic retrieval of publicly available in-

formation about products on the Internet, analysis and aggregation of this information

and sending the relevant notifications to the users. A Telegram bot has been deve-

loped, which periodically checks the information for certain products and analyzes the

retrieved data. This saves customers periodic visits to online stores. A number of com-

mands have been developed and integrated in the bot that can be used by the users.

We give examples of using the developed application for retrieving information about

product availability, increasing or decreasing price, product reviews, posting new ads

on sales sites. Due to the lack of a unified standard for presenting product information

in e-commerce, it was necessary to develop adapters for each site. The application is

based on techniques for web data extraction, microservices and cron jobs. Possibilities

for further development of the presented application are also considered.

AMS Subject Classification: 68N01, 68N19

Key Words: automated retrieval of information, web scraping, e-commerce, telegram

bot, data collection, product price

Received: August 23, 2021 Revised: November 3, 2021
Published: November 15, 2021 doi: 10.12732/ijdea.v20i2.2

Academic Publications, Ltd. https://acadpubl.eu

1. INTRODUCTION

Nowadays e-commerce has become anintegral part of our daily lives [17]. Increasingly,



158 S. Dakov, A. Malinova

customers prefer the Internet to buy goods [18]. Often e-shops provide better promo-

tions of certain products than the corresponding physical stores. The same products

can be quickly found on different sites, but at different prices or a product’s price can

change many times in the same site. This causes buyers to store links of products and

check them periodically for promotions or other changes. Same goes when the product

is out of stock. The buyer still has to check the shop for product availability. Some

online shops have built-in functionality to notify the customer when the product gets

in stock, but not all of them offer that. This paper provides a generic solution for

automatically monitoring products and notifying the user when the product data has

changed, or a new product has been added.

There are four main techniques to collect information about a product from an

e-commerce website:

• Using a predefined file with products’ details provided to the tracking system by

online shops. One of the most famous platforms for monitoring products’ prices

in Bulgaria is pazaruvaj.com. It is preferred because it has been operating for

a long time and already has a fairly large range of stores and products – over

4,000,000 products from 761 stores [7]. Adding products from an online shop

to that system is done through a predefined XML or CSV file. These files can

be generated automatically, but this depends on the e-commerce platform that

has been used for creating the given online shop, otherwise they can be created

manually. Once the product information has been provided by the online stores,

pazaruvaj.com gives information about the best offer for a given product.

• Using RSS feed [19] – RSS stands for Really Simple Syndication, and it is a

simple, standardized content distribution method that can help users stay up

to date with their favorite newscasts, blogs, websites, and social media channels.

The RSS of an online store contains a list of all products with current prices, thus

other applications can retrieve the latest information about a product without the

need of parsing HTML content.

• Rest API [5, 20] – some websites provide APIs to access parts of their data. But

even though these sites provide APIs, there still exist some data fields that we

cannot scrape or have no permission to access. For example, Amazon provides a

Product Advertising API [22], but the API itself does not provide access to all of

the information displayed on a product page. In this case, the only way to scrape

more data, say the price data field, is to build our own scraper or use ready-made

scraper tools.



AUTOMATED PRODUCT INFORMATION RETRIEVAL ... 159

• Using web scraping (also screen scraping, web data extraction, web harvesting,

etc.) [1, 2] – this is a technique for automatically extracting data from websites

and saving the extracted data to a local file or to a database. A web scrap-

ing software can crawl multiple pages within a website and automate the time-

consuming task of manually copying and pasting the data displayed. Most often

custom web scrapers are developed, although there exist ready-made systems, e.g.,

https://www.scraping-bot.io/, https://www.scrapingbee.com/, https://scraping

robot.com/, etc. Web scraping technology is mainly used for:

– Search engine bots: web crawlers sent out from the world’s biggest web sites

to index content for their search engines and social media platforms, e.g.,

Googlebot, Baiduspider, MSN Bot/Bingbot, Yandex Bot, etc.

– Market research companies: scrape pricing and other information on pro-

ducts from e-commerce websites, vehicles on dealership sites, trips on travel

sites or property information from real estate sites.

– Scraping lead information from directories: either individual contact infor-

mation or company information to populate CRMs. For example, scraping

platforms such as Yelp or Yellow Pages.

– Academic research: collect data from sites for various research purposes.

– Build aggregators that collect blog posts, classified ads or jobs.

– Scrape data from an old website to move the content over to a new website,

where exporting or API are not available.

– Scrape reviews and comments for sentiment analysis.

The rest of the paper describes the software application we have developed for auto-

matically extracting product information from websites, aggregating this information,

and sending notifications to the user. Some of the possible uses of the developed ap-

plication are retrieving information about product availability, increasing or decreasing

price, product reviews, new ads posted on sales sites.

2. BUILDING THE WEB SCRAPING BOT

The application that we have developed is a web scraping bot that uses Telegram

messaging and consists of three separate microservices:

1) Web scraper



160 S. Dakov, A. Malinova

2) Command listener

3) Product scanner

The web scraper service provides functionality to get publicly available information

for a product. The command listener is responsible for controlling the Telegram bot.

It uses a cron job to periodically check and process commands submitted by the user.

Based on what command is executed, the command listener gives a corresponding

answer to the user. The product scanner is a service that takes care of updating the

data for the monitored products. It periodically checks the current data of products

such as price, availability, reviews, and rating. If there are differences with the previous

product parameters, the service sends a message to the user.

Since the presented application uses web scraping to extract information about a

product, one of the problems that arose was the lack of unified presentation of product

metadata. Many sites do not use a single standard to present product data. There are

couple of standards that can be used to represent microdata [11, 12, 13, 14]:

• OpenGraph – Facebook suggests the use of meta OG tags [10]. They contain

summary of the product data.

• Schema.org [15] – a collaborative community activity with a mission to create,

maintain, and promote schemas for structured data on web pages, in email mes-

sages, etc. It is supported by Google and other major search engines.

• JSON-LD [21] – a lightweight Linked Data format. It is based on the JSON

format and provides a way to help JSON data interoperate at Web-scale.

If each store uses a standard, the process of retrieving information will become very

easy and fast. The idea is to have standardized representation of the microdata for

the product. But if we want to extract something more than basic information such

as price, name, description, or feedback, we will still need a separate parser for each

store. Since most online stores do not use standard representations, the application

only supports certain platforms. Currently it supports Emag, Amazon and Ebay. We

have developed a separate parser for each store. Emag uses the standard JSON-LD to

represent the microdata for a product, so this parser can be used for any site that uses

this standard.

Figure 1 presents the web scraper service. The communication with it is done by

HTTP requests. It retrieves the product URL by a POST request and then gets the

source code of the page using a GET request. Then the algorithm checks where the



AUTOMATED PRODUCT INFORMATION RETRIEVAL ... 161

page came from and based on the domain name, it selects a specific parser. To parse

the source code, it uses different HTML parsers:

– DOMDocument and DOMXPath

– Symphony DomCrawler [9]

– PHP Html Parser

Figure 1. Web scraper service

After analyzing the source code, the web scraper service generates a Product object

and returns it in JSON format. Figure 2 shows all of the product object properties.

Figure 2. Product object properties

The command listener, shown on Figure 3, and product scanner, shown on Figure 7,

use the web scraper service to retrieve information about a product. When they get that

information, they send custom notifications to the user using Telegram – a platform

for messaging communication, similar to Facebook Messenger, WhatsApp, Signal and

others. It is a cross platform mobile messaging app for smart phones and tablets for

iOS and Android. It has desktop and web integration as well. Telegram allows users



162 S. Dakov, A. Malinova

to send and receive messages, photos, and have secure conversations. Telegram has a

free REST API [5, 20], which provides a list of commands through which it controls or

creates bots [8, 16]. It has easy integration with different programming languages. The

integration is relatively easy [6]. A Telegram bot is created and managed by Telegram

itself, using “BotFather” commands – Telegram’s main bot, which controls all other

bots. A new bot is created by using the command /newbot. It then asks for a name and

once created, returns a token which is used for communication with the Telegram API.

The application uses curl to make requests to the API, but there are many libraries

that can be used:

– Telegram Bot API Base – clear and simple Telegram Bot API.

– PHP Telegram API – a complete async capable Telegram Bot API implementa-

tion for PHP7.

– PHP Telegram Bot – PHP Telegram Bot based on the official Telegram Bot API.

– Bot API PHP SDK – a Telegram Bot API PHP SDK. Supports Laravel out of

the box.

– TeleBot – presents an easy way to create Telegram bots in PHP. Rich Laravel

support out of the box.

– NovaGram – an Object-Oriented PHP library for Telegram Bots.

– PHP Telegram Bot.

– PHP Telegram Bot Api – native PHP Wrapper for Telegram BOT API.

– TuriBot – a simple way to communicate with Telegram APIs in PHP.

– TelegramBotApiBundle – a Symfony wrapper bundle for Telegram Bot API.

The whole process is controlled by the user through commands and for this pur-

pose a command lister periodically checks for certain commands. Telegram allows the

implementation of custom commands, too. When sending a command, the service pe-

riodically checks what command the user has sent and decides what action to perform.

We have implemented the following eight commands:

– /help – shows basic information about the bot.

– /watch product [url] – add a new item to the watchlist, [url] is the product’s url.



AUTOMATED PRODUCT INFORMATION RETRIEVAL ... 163

– /watch shop [url] – add a new item to the watchlist, [url] is the product’s url.

– /list product – shows all watched products.

– /list shop – shows all watched shop lists.

– /remove product [productId] – remove product from the watched list.

– /remove shop [productId] – remove shop list from the watched list.

– /history [productId] – shows the price history of a specific product.

When sending a command to add a new product, the bot sends a POST request

containing the product URL to the scraper service. Then the scraper service returns the

product object. After that the object is saved in the database along with information

about which user it was sent from. It then sends a message to the user which says that

the product has been saved. It is possible for the user to send a link with a product

that is not yet supported. The product is still stored in the database, but it is marked

as not supported.

Figure 3. Command listener service

Telegram also allows the implementation of inline buttons. Adding a button is done

by sending additional options to the command. These buttons improve user interaction.

On Figure 4 is shown the result of using the /help command – the user can see all other

commands and use the buttons that perform the same actions.



164 S. Dakov, A. Malinova

Figure 4. Simple bot information and commands

By pressing the “Help” button, the “/help” command is executed. When a user

clicks the “Watch product” button, the command “/watch product” is executed, then

the bot sends a message that it is waiting for the user to send back the URL of the

product. When pressing the “Watch shop” button, the command “/watch shop” is

executed, then the bot waits for the user to enter the URL for a list result of a product

search in an e-commerce website. When the “List product” button is pressed, the “/list

product” command is executed, and the bot returns a list of all added products by the

user. Figure 5 shows a listed product. When the “List shop” button is pressed, the

“/list shop” command is executed, whereby the bot returns a list of all added stores for

the given user. Similar buttons are added to each product when it is being displayed.

This makes it easier for the user to open a link to a product, delete it or see the price

history.

Figure 5. Example of a listed product

When pressing the “Open link” button, the user is redirected to the product in the

online store. When the “Remove” button is clicked, the “/remove product [productId]”

command is executed, and the product is deleted. Then the bot sends a message back

to the user about successfully deleting the product. When the user clicks the “History”

button, the “/history [productId]” command is executed and returns the price history

for a given product. Figure 6 shows the history of a product’s price.



AUTOMATED PRODUCT INFORMATION RETRIEVAL ... 165

Figure 6. Example of a product price history

The product scanner service takes care of updating the data for each registered

product. The current data for each product is checked. When starting the scanning

process, the service takes all supported products from the database and calls the Web

scraping service by sending a POST request with the product URL. The web scraping

service returns information – then the algorithm compares the differences between the

current data and that in the database.

Figure 7. Product scanner service

If the service finds any difference, it sends notifications to the end user depending

on what the difference is:

– Price change

– Change in availability

– New opinion

– New rating

– New product has been added to a shop

When changing product data, the scanner sends a message to the user with the new

product data. Figure 8 shows an example of a notification when the price increases.



166 S. Dakov, A. Malinova

Figure 8. Example of product with increased price

When the scanner finds a new product in a list, it sends a notification to the user

with the data for the new product (Figure 9). Then the user has the option, by pressing

the buttons, to add the product directly to the watch list or if they decide – to delete

the watchlist.

Figure 9. A new added product

3. CONCLUSIONS

It can be concluded that a Telegram bot is suitable to be used with a web scraping tool

to perform repeated HTML parsing tasks and user notifications. The bot successfully

tracks products in e-commerce websites, and the user gets notified when the price

has been changed and when a new product has been added. In the future more e-

commerce website parsers can be added, as well as a command listener which uses

webhooks. Most online stores are developed using ready-made platforms. Each e-

commerce framework has a specific structure by which it represents the product data.

For future development, the possibility of generic parsers for the largest e-commerce

platforms will be considered: Bigcommerce; Magento; Prestashop; Shift4Shop; Shopify;

Squarespace; Volusion; Weebly; Wix; WooCommerce.



AUTOMATED PRODUCT INFORMATION RETRIEVAL ... 167

ACKNOWLEDGMENTS

This paper is supported by the project FP21-FMI-002 of the Scientific Fund of the

Paisii Hilendarski University of Plovdiv, Bulgaria.

REFERENCES

[1] J. Hillen, Web scraping for food price research, British Food Journal, (2019), Vol.

121, No. 12, 3350–3361, ISSN: 0007-070X, DOI: 10.1108/BFJ-02-2019-0081.

[2] Z. Bo, Web scraping, Encyclopedia of Big Data, Springer International Publishing,

(2017), 1–3, DOI: 10.1007/978-3-319-32001-4 483-1.

[3] Telegram. 2021. Bots: An introduction for developers. Retrieved on September 5,

(2021), from https://core.telegram.org/bots.

[4] R. Nufusula, Rancang Bangun Chat Bot Pada ServerPulsa Mengunakan Telegram

Bot API, Journal of information system, (2018), 80–88, DOI: 10.33633/joins.v3i1.

1884.

[5] S. Lyu, REST APIs, Practical Rust Web Projects, (2021), 55–102, DOI: 10.1007/

978-1-4842-6589-5 3.

[6] N. Modrzyk, Building Telegram Bots: Develop Bots in 12 Programming Languages

using the Telegram Bot API, Apress; 1st ed. edition, (2019), DOI: 10.1007/978-1-

4842-4197-4.

[7] Pazaruvaj, 2021, https://www.pazaruvaj.com/.

[8] D. Ismawati, The Development of Telegram BOT Through Short Story, Proceed-

ings of the Brawijaya International Conference on Multidisciplinary Sciences and

Technology, (2020), 209–212, DOI: 10.2991/assehr.k.201021.049.

[9] Symfony, The DomCrawler Component, Retrieved on September 5, (2021), from

https://symfony.com/doc/current/components/dom crawler.html.

[10] Facebook, Product Object, Retrieved on September 6, (2021), from

https://developers.facebook.com/docs/payments/product/.

[11] P. Jimenez, On the synthesis of metadata tags for HTML files, Software: Practice

and Experience, (2020), 2169–2192, DOI: 10.1002/spe.2886.

[12] R. Meusel, The WebDataCommons Microdata, RDFa and Microformat Dataset

Series, The Semantic Web – ISWC’2014, (2014), 277–292, DOI: 10.1007/978-3-

319-11964-9 18.



168 S. Dakov, A. Malinova

[13] P. Petrovski, Integrating product data from websites offering microdata markup,

Proceedings of the 23rd International Conference on World Wide Web, (2014),

1299–1304, DOI: 10.1145/2567948.2579704.

[14] A. Kannan, Matching Unstructured Product Offers to Structured Product Descrip-

tions, Proceedings of the 17th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, (2011), 404–412, DOI: 10.1145/2020408.2020474.

[15] J. Ronallo, HTML5 Microdata and Schema.org, Code4Lib J, (2012), Issue 16,

ISSN: 1940-5758.

[16] M. Rosid, Integration Telegram Bot on E-Complaint Applications in College, IOP

Conference Series: Materials Science and Engineering, (2018), 1757–8981, DOI:

10.1088/1757-899x/288/1/012159.

[17] V. Jain, An Overview of Electronic Commerce (e-Commerce), Journal of Contem-

porary Issues in Business and Government, (2021), 27, 665–670, DOI: 10.47750/

cibg.2021.27.03.090.

[18] T. Raval, Study of Effectiveness of Online Shopping, Indian Journal of Applied

Research, (2014), 76–78, DOI: 10.36106/ijar.

[19] F. Getahun, Multi-Query Optimization on RSS Feeds, J Data Semant, (2018), 7,

47–64, DOI: 10.1007/s13740-018-0085-3.

[20] B. Williams, REST API, Professional WordPress Plugin Development, (2020),

279–314, DOI: 10.1002/9781119666981.ch12.

[21] M. Lanthaler, On using JSON-LD to create evolvable RESTful services, WS-REST

’12: Proceedings of the Third International Workshop on RESTful Design, (2012),

25–32, DOI: 10.1145/2307819.2307827

[22] Amazon’s Product Advertising API 5.0, 2021, https://webservices.amazon.com/

paapi5/documentation/.


